Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian Xiao, Yong-Na Lu, Guo-Cang Wang, Qun-sheng Guo, Bin Liu, Hai-Bin Song and Jin-Shan Li*

State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Weijin Road No. 94 Tianjin, Tianjin, People's Republic of China

Correspondence e-mail:
jinshan_li2001@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.138$
Data-to-parameter ratio $=15.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(3H-Inden-1-ylmethyl)-2,2'-bis(methoxy-methoxy)-1,1'-binaphthalenyl

In the title compound, $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{4}$, the dihedral angle between the planes of the indene group and the nearer naphthalene ring system is $84.88(5)^{\circ}$. No significant hydrogen-bonding interactions are observed in the crystal structure.

Comment

A number of studies have been reported on the introduction of various kinds of substituents into the indenyl ligand in order to study the relationship between the structures of complexes and their catalytic activities (Bruce et al., 1997; Hauptman et al., 1995; Kravchenko et al., 1997; Petoff et al., 1997). 3-Substituted indenes are generally obtained by indenyllithium nucleophilic attack (Grimmer et al., 2000). We report here the crystal structure of the title 1-substituted indene, (I).

(I)

In the molecule of (I) (Fig. 1), the dihedral angle between the two naphthalene ring systems is $70.78(5)^{\circ}$. The $\mathrm{C} 4-\mathrm{C} 3-$ C23-C24 torsion angle of 52.4 (3) ${ }^{\circ}$ describes the orientation of the 3 H -inden-1-ylmethyl group with respect to the $\mathrm{C} 1-\mathrm{C} 10$ naphthalene ring system. The dihedral angle between the planes of the indene group and the $\mathrm{C} 1-\mathrm{C} 10$ naphthalene ring system is $84.88(5)^{\circ}$. The $\mathrm{C} 3-\mathrm{C} 23-\mathrm{C} 24$ bond angle of $112.9(2)^{\circ}$ is larger than the ideal tetrahedral value of 109.5°. The C3-C23 bond $[1.520$ (3) \AA] is slightly longer than the $\mathrm{C} 23-\mathrm{C} 24$ bond $[1.500$ (3) Å].

Experimental

To an ice-cooled pink-red solution of indenyllithium (5 mmol) in tetrahydrofuran (THF; 20 ml) was added a solution of $2,2^{\prime}$-bis-(methoxymethoxy)-1,1'-binaphthalen-3-ylmethyl methanesulfonate $(2.41 \mathrm{~g}, 5 \mathrm{mmol})$ in THF, and the mixture was stirred overnight. The resultant red solution was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{ml})$ and extracted with ethyl acetate $(50 \mathrm{ml})$. The combined organic layers were washed with $1 N$ aqueous $\mathrm{HCl}(10 \mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. The mixture was then dried over MgSO_{4} and evaporated under reduced pressure, and the residue was purified by column chromatography $\left[\mathrm{SiO}_{2}\right.$, petroleum ether-ethyl acetate ($10: 1 \mathrm{v} / \mathrm{v}$)] to give a colourless solid (yield 1.6 g ,

Received 11 April 2005 Accepted 18 April 2005 Online 27 April 2005
$3.19 \mathrm{mmol}, 64 \%$; m.p. $412-413 \mathrm{~K})$. Analysis found: C 81.11, H 5.76\%; calculated for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{4}: \mathrm{C} 81.25, \mathrm{H} 6.02 \%$. Block-shaped single crystals of (I) suitable for X-ray diffraction were obtained on evaporation of a solution in THF over several days at room temperature. Spectroscopic analysis: IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3054, 2960, 2897, 2825, 1625, 1506, 1466, 1397, 1358, 1241, 1201, 1152, 1086, 1014, 973, 924, 757; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): 7.91, 7.88 (d, $1 \mathrm{H}), 7.81,7.80(d, 1 \mathrm{H}), 7.70(s, 1 \mathrm{H}), 7.53,7.50(d, 1 \mathrm{H}), 7.43,7.40(d$, $1 \mathrm{H}), 7.37,7.34(d, 1 \mathrm{H}), 7.32-7.09(m, 8 \mathrm{H}), 6.20(s, 1 \mathrm{H}), 5.07,5.05,4.99$, $4.97(q, 2 \mathrm{H}), 4.58,4.56,4.50,4.47(q, 2 \mathrm{H}), 4.15(s, 2 \mathrm{H}), 3.35(s, 2 \mathrm{H})$, $3.09(s, 3 H), 2.81(s, 3 H), 2.09(s, 1 H)$.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{4}$
$M_{r}=502.58$
Monoclinic, $P 2_{1} / n$
$a=16.507$ (6) \AA
$b=8.361$ (3) \AA
$c=18.907$ (7) \AA
$\beta=100.076$ (6) ${ }^{\circ}$
$V=2569.2(15) \AA^{3}$
$Z=4$

$$
D_{x}=1.299 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 882 reflections
$\theta=2.9-24.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.24 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
14431 measured reflections
5260 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.138$
$S=1.09$
5260 reflections
345 parameters
H-atom parameters constrained

3230 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-15 \rightarrow 20$
$k=-8 \rightarrow 10$
$l=-23 \rightarrow 23$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0491 P)^{2}\right. \\
\quad+0.7205 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.29 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }= \\
\hline
\end{array} 0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C2	$1.389(3)$	O4-C33	$1.379(3)$
O1-C21	$1.432(3)$	O4-C34	$1.417(4)$
O2-C12	$1.375(3)$	C1-C11	$1.494(3)$
O2-C33	$1.414(3)$	C3-C23	$1.520(3)$
O3-C21	$1.367(3)$	C23-C24	$1.500(3)$
O3-C22	$1.420(3)$	C24-C25	$1.335(3)$
C2-O1-C21	$112.70(17)$	C24-C23-C3	$112.9(2)$
C12-O2-C33	$119.11(18)$	C25-C24-C28	$108.5(2)$
C21-O3-C22	$113.6(2)$	C25-C24-C23	$128.2(2)$
C33-O4-C34	$113.4(2)$		
C2-C1-C11-C12	$69.4(3)$	C2-C1-C11-C16	$-110.5(2)$
C6-C1-C11-C12	$-106.3(2)$	C6-C1-C11-C16	$73.8(3)$

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 (methyl) $U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Most of the H atoms have been omitted for clarity.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 20372037).

References

Bruce, M. D., Coates, G. W., Hauptman, E. \& Waymouth, R. M. (1997). J. Am. Chem. Soc. 119, 11174-11182.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Grimmer, N. E., Coville, N. J., Koning, C. B., Smith, J. M. \& Cook, L. M. (2000). J. Organomet. Chem. 616, 112-127.

Hauptman, E. \& Waymouth, R. M. (1995). J. Am. Chem. Soc. 117, 1158611587.

Kravchenko, R., Masood, A. \& Waymouth, R. M. (1997). Organometallics, 16, 3635-3639.
Petoff, J. L. M., Bruce, M. D. \& Waymouth, R. M. (1997). Organometallics, 16, 5909-5916.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

